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44 Yale University, New Haven, Connecticut 06520

We search for color singlet technirho and technipion production in p�p collisions at
p
s = 1:8 TeV

recorded with the Collider Detector at Fermilab. These exotic technimesons are present in a model

of walking technicolor. The signatures studied are lepton plus two jets and multijet �nal states.

No excess of events is seen in either �nal state. We set an upper limit on the technirho production

cross section and exclude a region in the technipion mass versus technirho mass plane at the 95%

con�dence level.

PACS numbers: 13.85.Rm,12.60.Nz,14.80.-j
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In the Standard Model, electroweak symmetry break-

ing is responsible for giving rise to particle masses. The

broken symmetry arises from a Higgs scalar �eld and

an as yet unobserved Higgs boson. An alternative ex-

planation for the broken symmetry is through a dy-

namical interaction known as technicolor [1], where the

Higgs boson is replaced by states of two techniquarks,

called technipions, bound by the technicolor force. In the

walking technicolor (WTC) model [2] color-singlet tech-

nirhos (��;0T ) can be produced in high energy s-channel

q�q annihilation. The decay modes of technirhos are

��T ! W��0T ; Z
0��T ; W

�Z0; �0T�
�
T , plus fermion pair

(f �f 0), and �0T ! W���T ; W
�W�; ��T �

�
T , plus f

�f . The

branching ratio of each decay mode depends on the mass

of the technirho (M(�T )) and the technipion (M(�T )).

For M(�T ) <
1

2
M(�T ), the �T ! �T�T decay domi-

nates. For massesM(�T ) � 180 GeV/c2 andM(�T ) � 90

GeV/c2, �T ! W�T is the dominant decay mode. The

rates of these �T ! W�T and �T ! �T�T decay modes

are large enough that we might observe a WTC signal at

the Tevatron [3]. The W boson decays to leptonic or

hadronic �nal states, with the leptonic (e or �) channels

having smaller backgrounds. The technipion decays to a

pair of fermions. The coupling between a technipion and

a fermion is stronger for larger fermion mass. Therefore,

a �0T decays mostly to b�b pairs, and a ��T to �bc [4], pro-

ducing at least one b-jet. Consequently the �T ! �T�T

decay mode produces the only all-hadronic �nal state

with at least two b-jets in this model.

In this analysis, we search for technipions and tech-

nirhos in the lepton (e or �) plus two jets (`+2j) mode

using an integrated luminosity of 109 � 7 pb�1 and in

the multijet (4j) mode using an integrated luminosity

of 91� 7 pb�1 collected with the Collider Detector at

Fermilab (CDF) in 1992-1995. The processes we search

for in the `+2j mode are ��;0T ! W��0;�T ! `�b�b

or `��bc. The main processes we search for in the 4j

mode are ��;0T ! ��T �
0;�
T ! �bcb�b or �bc�bc as well as

��;0T ! W��0;�T ! q�q0b�b or q�q0�bc. In both modes, we

reconstruct technipions from the dijet system where one

or both jets are identi�ed (\tagged") as coming from a b

hadron. Technirhos are reconstructed from the W+2 jet

system only in the `+2j mode [5].

We describe a counting experiment [6] using the `+2j

mode, followed by a shape analysis of the dijet invariant

mass distribution in both modes. We show cross section

limits from both methods. From the `+2j mode, we

exclude a region in theM(�T ) versusM(�T ) plane where

the �T ! W�T decay mode is dominant. This letter is

the �rst published result in the direct search for color

singlet technirho production [7].

The CDF detector [8] consists of a magnetic spec-

trometer surrounded by calorimeters and muon cham-

bers. A four-layer silicon microstrip vertex detector

(SVX) [9], located immediately outside the beam pipe,

provides precise track reconstruction in the plane trans-
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verse to the beam and is used to identify secondary ver-

tices from b and c hadron decays. The momenta of

charged particles are measured in the central tracking

chamber (CTC), which is located inside a 1.4-T super-

conducting solenoid. Outside the CTC, electromagnetic

and hadronic calorimeters cover the pseudorapidity re-

gion j�j < 4:2 [10] and are used to identify electron and

photon candidates and jets. The calorimeters are also

used to determined the missing transverse energy (ET= ),

which can indicate the presence of energetic neutrinos.

Outside the calorimeters, drift chambers in the region

j�j < 1:0 provide muon identi�cation.

The data selection criteria for the `+2j mode is the

same as in the Standard Model Higgs boson search analy-

sis in the W +2 jet channel [11] plus additional crite-

ria designed to further exploit the characteristics of the

WTC signal [3]. We require either an isolated electron

with ET > 20 GeV or an isolated muon with PT > 20

GeV/c in the central region, j�j < 1.0. We also require

ET= > 20 GeV, and exactly two jets with ET > 15 GeV

and j�j < 2:0. Jets are de�ned as localized energy depo-

sitions in the calorimeters and are reconstructed using an

iterative clustering algorithm with a �xed cone of radius

�R =
p
��2 +��2 = 0:4 in ��� space [12]. In order to

reduce the large W +2 jet background, we require that

at least one of the jets be identi�ed as a b-jet candidate.

Identi�cation of the b-jet is done by reconstructing sec-

ondary vertices from b-quark decay using the SVX (SVX

b-tagging). The detail of the SVX b-tagging algorithm

is described in Ref. [13]. After the W+2 jet with SVX

b-tagging selection (Wbq), the observed number of events

is 42, while the expected number of background events is

31.6�4.3 (syst) which represents an excess of about 1.5�.

The major background contributions areWb�b, Wc�c, and

Wc productions. Other backgrounds are due to mistags

(tagging a light quark as a b), t�t and single t production,

non-W processes, vector boson pairs, and Z boson plus

heavy avor production.

The acceptance and e�ciencies of the signal are esti-

mated using the PYTHIA Monte Carlo [14]. We arbi-

trarily choose forty-seven mass combinations of the �T

and �T , where the cross sections are larger than �5 pb.

The model parametes we use are NTC = 4 (the number

of technicolors, analogous to the three colors in QCD),

QD = QU � 1 = 1/3 (techniquarks charges) and sin�

= 1/3 (the mixing angle). Details of the parameters are

described in [2]. Generated events are passed through

a simulation of the CDF detector. The total e�ciency

of the Wbq selection is approximately 1%, including the

branching ratio of W ! e�; ��.

We reduce the background further by applying addi-

tional selection criteria on the azimuthal angle (�) be-

tween the two jets, ��(jj), and on the PT of the dijet

system, PT(jj), which are unique to this analysis [3].

Our WTC signal search region in the `+2j mode is char-

acterized by M(�T ) + M(W ) ' M(�T ). In this case,
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technipions are produced nearly at rest in the transverse

plane, and consequently the PT(jj) is smaller and the two

jets are more back-to-back than in background events. In

order to obtain the optimum selection criteria, we apply

��(jj) and the PT(jj) requirements simultaneously and

maximize the S=
p
B (signal over square root of the back-

ground) values. We thus obtain ��(jj) and PT(jj) cut

values for each mass combination. For example, at a mass

combination of M(�T ) = 90 GeV/c2 and M(�T ) = 180

GeV/c2, the optimized selection criteria are ��(jj) > 2:1

and PT(jj) < 40 GeV/c. For each mass combination, the

e�ciency ranges from 80% to 90% for the signal, and 20%

to 40% for the background.

We reconstruct the invariant mass of the dijet sys-

tem, M(jj), which corresponds to the technipion mass,

and the invariant mass of theW+2 jet system,M(Wjj),

which corresponds to the technirho mass. A signal would

appear as peaks in the two mass distributions. Jet energy

is corrected for calorimeter gaps, non-linear response, en-

ergy not contained in the jet cone and underlying event

energy. In order to reconstruct the M(Wjj), we need to

estimate the Pz of the neutrino (Pz(�)) which is unknown

since we measure only its transverse component. We

solve for Pz(�) using the W mass constraint in a lepton-

neutrino system and take the smaller jPz(�)j of the two

solutions [15]. If there is no real solution for the Pz(�),

we take the real part of the solution of the quadratic

equation. Figure 1 shows the M(jj) andM(Wjj) distri-

butions before and after the ��(jj) and PT (jj) require-

ments for data and simulation for M(�T ) = 90 GeV/c2

and M(�T ) = 180 GeV/c2. Finally, we apply a mass

window requirements. The signal Monte Carlo sample is

used to estimate the mean and resolution (�m) for each

M(jj) and M(Wjj). We de�ne the mass window re-

quirement to be within �3�m of the mean mass value.

The typical mass resolutions forM(jj) and M(Wjj) are

approximately 15 GeV/c2 and 20 GeV/c2, respectively.

Table I summarizes our results. The small excess

seen in the `+2j mode after the Wbq selection is no

longer present after the cuts designed to enhance a con-

tribution from WTC. We set 95% C.L. upper limits on

�counting , taking into account a total 27% systematic un-

certainty in the e�ciency. The �counting is de�ned as

�(p�p ! �T ! W�T ) times the branching ratio (BR),

where BR includes �0T ! b�b and ��T ! �bc. The dominant

sources of systematic uncertainty are initial state radia-

tion (10%) and �nal state radiation (19%). We exclude

a region in the M(�T ) versus M(�T ) plane as shown in

Figure 2.

We now describe a search for technipions using the di-

jet mass distributions of two b-tagged jets in the `+2j and

4j channels. The 4j channel is senstive to both the W�T

and �T�T decays of the �T , while the `+2j analysis de-

scribed above searched for �T ! W�T decays only. This

analysis is similar to a previous published CDF search for

Standard Model Higgs boson production in association
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with a W boson [16], but has improved the sensitivity

for this technipion search [17]. We chose a grid of points

in the M(�T ) versus M(�T ) plane outside the region al-

ready excluded by the counting experiment. This dijet

mass shape study sets cross section limits by searching

directly for a narrow technipion decay and therefore com-

plements our search using the counting experiment.

The multijet data sample is the same as [16]. Events

are required to have four or more jets with ET > 15 GeV

and j�j < 2:1. In addition, we require that at least two

of the four highest ET jets in the event be identi�ed as b

quark candidates to reduce the large QCD background.

Only the four highest ET jets are considered for the mass

reconstruction: the two highest ET b-tagged jets are as-

signed to the technipion, and the other two to the vector

boson or the other technipion. A further selection cri-

terion, which is unique to this analysis, is imposed on

the � angle between the two highest ET b-tagged jets,

��(b�b) � 1:5, to remove the gluon splitting component

of the background and to reduce the wrong jet assign-

ments that may arise when more than one technipion is

present.

We observe 389 events in data after all the selection re-

quirements are applied. The main source of background

is QCD heavy avor (b�b=c�c) production for which the

normalization is not well known and is left free in the �t.

Other backgrounds are t�t, Z + jets with Z! b�b=c�c, and

mistags. These non-QCD backgrounds are estimated to

be 114�12 (syst) events. The total signal e�ciency varies

from 0:2% to 0:5% depending on the �T and �T masses.

This e�ciency is primarily a result of the high energy

threshold of the multijet trigger (�2% to �8%) and the

double-b-tag requirement (�10%). The trigger e�ciency

falls at lower �T mass region where �T ! �T�T cross sec-

tion is higher. Figure 3 shows invariant mass distribution

of the b-tagged dijet system for data, background and

M(�T ) = 95 GeV/c2 and M(�T ) = 195 GeV/c2 signal.

We use the same method as in Ref. [16] and place limits

on ��tting by taking into account a 34% total systematic

uncertainty in the e�ciency and shape. The ��tting is

de�ned as �(p�p ! �T ! WW;WZ;W�T ; Z�T ; �T�T )

times BR, where BR includes W=Z ! jj, �0T ! b�b and

��T ! �bc. We apply the same �tting procedure to the

`+2j data sample. The ��(jj) and PT(jj) requirements

are not applied in order to have su�cient statistics to �t

the dijet mass distribution.

Table II summarizes the result from the shape analysis

which provides no further constraint to the WTC model.

However, in addition to the limits on ��tting , the results

provide us important guidance for the upcoming Teva-

tron run. Besides higher luminosity and signi�cant de-

tector improvements, we will have the ability to trigger

on hadronic b decays by way of charged track impact pa-

rameter information. This hadronic b trigger along with

lower trigger energy thresholds will signi�cantly improve

our sensitivity to technicolor models.
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In summary, we have performed a search for techni-

color particles, �T and �T . From the counting experi-

ment in the `+2j mode with ��(jj), PT(jj), and mass

window cuts, no excess over background estimation is ob-

served, and we set production cross section limits. We

exclude a region in the M(�T ) and M(�T ) plane at the

95% C.L. We also performe a search using the shape of

the dijet invariant mass distributions in the 4j and the

`+2j modes and set cross section limits.
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FIG. 1. The invariant mass of the dijet system and
of the W+2 jet system for the `+2j mode. Require-
ments of ��(jj) > 2:1 and PT(jj) < 40 GeV/c are
applied in the bottom plots. The number of events of
the background and the technicolor Monte Carlo sig-
nal are normalized to the expected number of events in
109 pb�1. The mass combination shown is M(�T )=90
GeV/c2 and M(�T )=180 GeV/c

2.

M(�T ;�T ) �theorycounting �tot: Nexp: NB:G: Nobs: Nlim: �
lim:
counting

[GeV/c2] [pb] [%] [pb]

80,170 3.7 0.64 2.6 5.4�0.7 5 7.3 10.5

85,170 14.1 0.66 10.2 3.8�0.5 5 8.4 11.7

90,180 15.7 0.69 11.8 5.7�0.8 5 7.1 9.5

95,185 13.0 0.88 12.5 6.4�0.9 6 7.9 8.1

100,190 10.9 0.92 10.9 6.5�0.9 6 7.8 7.8

105,200 9.3 0.94 9.5 7.4�1.0 8 9.5 9.2

110,210 7.4 0.97 7.9 9.8�1.3 13 13.8 13.0

115,210 6.9 1.02 7.7 8.4�1.2 10 11.2 10.0

TABLE I. Summary of the +̀2j mode counting experiment
for various �T and �T mass combinations after all selection
cuts have been applied. The �theorycounting is the expected the-
oretical �counting . The �tot: is the total e�ciency, Nexp: is
the expected number of signal events, NB:G: is the estimated
number of background events, Nobs: is the observed number
of events, and Nlim: and �lim:

counting are the 95% C.L. limits,
taking into account a 27% systematic uncertainty.
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FIG. 2. The shaded region shows the 95% C.L. ex-
cluded region in theM(�T ), M(�T ) plane. Three con-
tours of �theorycounting are also shown (5,10, and 15 pb).
PYTHIA v6.1 with MRSG parton distribution func-
tion and a K-factor =1.3 is used to calculate the cross
section.
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GeV/c2 and M(�T )=195 GeV/c2.

9



95% C.L. upper limits on ��tting
M(�T ;�T ) �theory�tting 4j `+2j Combined

[GeV/c2] [pb] [pb] [pb] [pb]

95,195 12.3 613 50.1 160
100,205 9.8 257 44.2 109
105,205 8.2 375 31.1 82
110,210 7.3 388 31.5 83
110,220 6.6 362 32.0 89

TABLE II. 95% C.L. upper limits on ��tting from the two
di�erent channels and from their combination. The �rst col-
umn lists the mass combinations, the second is the theoretical
cross section, the third, fourth and �fth column are the 95%
C.L. limits from the 4j, `+2j and combination of both, re-
spectively. We note here that ��tting includes theW=Z ! jj
branching ratio.
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